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0 About This Document

This primer is designed as an introduction to the mathematical techniques that
will be used throughout the MA course ‘Adv. PE I’ and other courses offered
by the chair of public finance. The selection of techniques is not meant to be
complete, it is meant to fit into roughly two hours of teaching or careful reading.

Chiang (1984) is a very good (English) book to look up specific math problems.
It is available in the library: WIR:GC:100:C532:(4):2005.

1 Functions with a Single Variable and Their
Derivatives

1.1 Functions

A function describes how measures of one or more inputs translate into a
single measure of output. Throughout this primer we will use the example of a
production function.

Imagine us running a factory that produces fresh water from sea water.1 Since
plenty of sea water is available, we ignore it for the moment and assume that
our output of fresh water Y only depends on the number of machines (i.e. the
size of the factory or capital) K available to perform the transformation.

Y = Y (K) = f(K) = 5 ·K (1)

Equation (1) is an example of a production function that could apply in this
context. Y , Y (K), and f(K) are different names that are often used for this
sort of function, 5 · K is the function’s specific functional form. It contains
information about our technology of production: For every unit of capital (e.g.
for every machine) we are able to produce 5 units of fresh water Y (per day).
For example, K = 8 units of capital would allow us to produce Y = 5 · 8 = 40
units of fresh water.
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Figure 1: A linear production function with a single input K

We plot the function in figure 1 to get a better understanding of how it works.
Admittedly, this is a pretty trivial function, but we will make things more
complicated soon.

1.2 Derivatives

Our production function tells us something about the relationship between
K and Y , but sometimes we are more interested in the relationship between
a change in K and a change in Y . For example when we are considering an
increase in capital, we care about the additional output that this increase

1The example may seem slightly unconventional at first, but we will get back to the choice
of the example later.
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will generate. The first-order derivative of a function provides us with this
information.

If we know the functional form of our production function, and in our case we
do, we can use the rules of differentiation to calculate the derivative. Tables 2
and 3 in appendix A contain those rules. Appendix B provides you with some
exercises that you can use to practice the application of the rules if you want to
brush up on your skills.

∂Y

∂K
= YK = Y ′(K) = f ′(K) = 5 (2)

Equation (2) is the first-order derivative of our production function with respect
to K. Again ∂Y

∂K , YK , Y ′(K), and f ′(K) are different names for the derivative
(we will mostly be using the first and the second one), while 5 is the specific
functional form of our derivative.

Here, the first-order derivative does not depend on K, i.e. there is no K in 5.
Regardless of how much K we are already using, adding one additional unit of
capital K to our inputs will result in 5 additional units of fresh water Y being
produced.

The second derivative is nothing more than the first-order derivative of the
first-order derivative. It tells us how the relationship between a change in K
and a change in Y changes with K. This may seem slightly confusing at first,
but continue to read. In the next example, things will become clearer.

∂2Y

∂K2
= YKK = Y ′′(K) = f ′′(K) = 0 (3)

Equation (3) is the second-order derivative of our production function. Again,
∂2Y
∂K2 , YKK , Y ′′(K), and f ′′(K) are different ways of referring to the second
derivative of Y with respect to K and 0 is the specific functional form of the
derivative in the case of our production function.

The value 0 of the second derivative implies that, in our case, the level of K does
not have an effect on the relationship between changes in K and Y . Actually,
we already discovered this characteristic of our production above: an increase
in K by one unit will always translate into an increase in Y by five units. The
word ‘always’ precisely refers to the fact that this assertion does not depend on
the level of K.

We will now look at a production function with a different functional form. This
will also allow us to revisit the concept of derivatives.

Y (K) = K0.5 (4)

Above, we used a linear production function. Instead, we will now use the
function given by equation (4). From now on, we will also stick to the following
names for our function and its derivatives: Y (K) is our production function, YK
is its first-order derivative (with respect to K) and YKK is its second derivative
(with respect to K).
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Figure 2: A concave production function with a single input K
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Figure 2 plots the new production function. It rises quickly for low levels of K
and more slowly for higher levels of K. This assumption seems more realistic
if the plant is run by a fixed number of workers.2 As the number of machines
increases, technicians will have less time to attend to each individual machine.
This will decrease the productivity of each individual machine, because it will
take longer, until somebody notices machine failures and has time to fix them.
We will still be able to produce more fresh water if we add additional machines,
but the additional output Y after adding a machine will be lower if we already
have a lot of machines. These characteristics of our technology are reflected in
the derivatives of our production function.

YK = 0.5K−0.5 (5)
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Figure 3: The first-order derivative of a concave production function

Equation (5) gives the first-order derivative of the new production function and
figure 3 plots it. The derivative is positive but declines as more capital is used.
The output contribution of additional machines decreases with the number of
machines in use.

YKK = −0.5K−1.5 (6)
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Figure 4: The second derivative of a concave production function

Equation (6) and figure 4 repeat the same exercise for the second derivative.

Above, we interpreted the value of the second derivative as the effect of changes
in K on the relationship between changes in K and Y . We can now understand
this explanation by looking at our example.

Our second derivative is negative for all values of K, i.e. an increase in K will
reduce the amount of Y that we can gain by adding even more K. However,
this negative effect approaches zero for large values of K. As the benefit of
adding K (measured by the first-order derivative) becomes smaller, so does the
negative effect of adding K on that benefit (measured by the second derivative).

In case you are confused, table 1 summarizes the interpretation of the value of
a function and its derivatives using the example of a production function.

2The assumption of a fixed number of workers is not explicitly visible in the production
function. We will take a closer look at it in section 2.
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Value of . . . Interpretation

Y (K) Amount of output produced with inputs K
YK Benefit of adding one more unit of K
YKK Change of benefit of adding one more unit of K

Table 1: Interpretation of a production function and its derivatives

1.3 General Assumptions vs Specific Functional Forms

We have already seen two different functional forms of production functions:
Y (K) = 5 ·K and Y (K) = K0.5. Specific functional forms are nice, because
they allow us to easily plot functions and quickly get an impression of their
shape. They also allow us to calculate derivatives if we are interested in the
behavior of the function. However, most of the time, we will not use specific
functional forms, because they introduce more (implicit) assumptions about
how exactly a function looks than we are willing to make.

Instead of something like Y (K) = K0.5 we will simply state that there is a
function Y (K) with YK > 0 and YKK < 0. These assumptions are much less
‘heavy’, but carry roughly the same meaning: Output increases in K, but as
K gets larger the same increase in K leads to smaller and smaller increases in
Y . Economists use this particular set of assumptions quite often and call it
‘positive and decreasing returns to scale’.3

2 Assumptions

In economic models we often make assumptions which seem overly simplistic or
extremely unbalanced. That can be a bad thing, but often it is not.

Not all assumptions are made consciously. Some mathematical properties can
be interpreted in different ways.

Let’s take a look at some of the assumptions that we have made above:

1. Sea water doesn’t appear in the production function. ⇒ Fits our picture
of the real world. There is so much of it, that we probably don’t have to
care.

2. There is only one type of machine. All machines work in the same way. ⇒
Doesn’t fit, but not too far from the truth. It is probably ok, to assume
some average technology across all machines.

3. Machines are the only input (factor of production). ⇒ Definitely not true.
Somebody has to operate those machines.

• Can be interpreted as there being a single operator—or any fixed
number of operators. ⇒ Probably not so bad a fit after all.

4. Machines can’t break. ⇒ Probably fine in the short-run. Completely
unrealistic in the long-run.

• K can be interpreted as a flow measure, as operating costs instead of
a stock. ⇒ Probably fine, but does not really fit into the picture of
the real world that we have drawn above.

5. No external events: floods, sabotages, strikes . . .⇒ Completely unrealistic
in the long-run.

3Another set of assumptions that is often used are the Inada conditions (Inada 1963).
Intuitively, they carry the same meaning as ‘positive and decreasing returns to scale’ but
include additional assumptions that ensure that certain problems can be solved in a way that
satisfies mathematicians and economists at the same time.
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• These things happen. However, they don’t happen very often and
here we are only interested in modeling how things work ‘on regular
days’.

Take away:

1. Some assumptions are completely unrealistic, but it doesn’t matter, be-
cause we are focusing on something else. (As long at there is no interaction
between this subject and another.)

2. Some assumptions are made implicitly and can be interpreted in different
ways.

3. Some assumptions are unrealistic and have to be replaced by better ones.

3 Functions with Many Variables

We will now extend our previous example of a production function by explicitly
adding labor L as an input in equation (7). We end up with a function that
has two inputs.

Y (K,L) = K0.5L0.4 (7)

Since this is a three-dimensional function (two inputs plus one output) we will
not attempt to plot it. However, we can plot the relationship between each
input and the output under the assumption that the other input remains fixed
at some level K̄ or L̄. This assumption is often called the ceteris-paribus (c.p.)
assumption. Figure 5 shows the two resulting diagrams.
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Figure 5: Plots of a production function with two inputs, one input fixed

Derivatives of functions with more than one input are also calculated under the
ceteris-paribus assumption.4 Our new production function has two first-order
derivatives: each of them tells us something about the relationship between
output and one of the inputs, given that the other input remains fixed.

YK = 0.5K−0.5L0.4 (8)

YL = 0.4K0.5L−0.6 (9)

The derivatives are given by equations (8) and (9). Both derivatives are positive:
adding more of one production factor, while keeping the other fixed, increases
output.

YKK = −0.25K−1.5L0.4 (10)

YLL = −0.16K0.5L−1.6 (11)

We can also calculate two second-order derivatives (sometimes called the ‘pure’
second-order derivatives) of our production function; we simply have to take the
derivative of each first-order derivative with respect to the same input as before.

4If you don’t like this assumption, wait for section 6 where we will learn about the total
differential. It will allow us to look at the change of multiple variables at the same time.

6



The second-order derivatives are given by equations (10) and (11). Both are
negative: increasing the amount of an input reduces the output gains that are
derived from a one-unit increase in the same input.

However, a third second-order derivative (the ‘cross’ derivative) is still missing.
We can calculate it by picking either first-order derivative and differentiating it
with respect to the input with respect to which it has not been differentiated
before.5

YKL = YLK = 0.2K−0.5L−0.6 (12)

Equation (12) gives the cross derivative of our production function. It is
positive: increasing the amount of one input increases the input gains that
can be obtained from adding an additional unit of the other input. This is
an important consequence of the functional form that we have picked for our
production function and it is also an assumption that we will often make when
we do not use specific functional forms: our inputs complement each other. It is
more productive to have a balanced mix of the two than a lot of one, but very
little of the other.

If you think about it, this assumption makes a lot of sense in our example. In
the long run, machines will fail without engineers, but engineers will have a
hard time transforming sea water into fresh water without any machines. A
mix of both will result in more output.

4 Homogeneity and the Euler Equation

Up to this point, we have not talked about the cost of our inputs K and L and
actually, we will delay most of our thoughts about that until section 5. However,
assume for a second that capital is costly and that we have to pay for it. Now
take another look at figure 2, which plots our earlier production function where
capital K was the only input. You can immediately tell that there must be an
output level that we cannot reach. The more we produce, the more expensive
becomes the next increase in outputs. At some point, producing an additional
unit of output will be so expensive, in terms of capital, that we will not be
interested in producing it.

This is basically the same result that we got from the interpretation of the
second-order derivative of the production function in equation (6).

It would be good to know, whether our new production function, which has two
inputs K and L, suffers from a similar problem. Do we get less bang for the buck,
as we produce more and more? To make things a little more concrete: “Does
adding 10% more capital and 10% more labor yield more than, less than, or
exactly 10% more output?” Unfortunately, things are a little complicated with
our new production function, because there is no single second-order derivative
for changes in K and L that would provide us with this kind of information.

Actually, not all functions allow us to answer this question unambiguously.
Those who do are called homogeneous functions and, fortunately, our new
production function is homogeneous.

Y (δK, δL) = (δK)0.5 · (δL)0.4

= δ0.5 ·K0.5 · δ0.4 · L0.4

= δ0.9 ·K0.5 · L0.4

= δ0.9 · Y (K,L)

(13)

Mathematically, a function is homogeneous if we can multiply each input with
some constant, say δ, and rearrange the function until we end up with the

5It does not matter which of the two first-order derivatives we pick. We will always end
up with the same result. This mathematical law is so famous that it has two different names:
depending on the context it is either called the ‘Schwarz integrability condition’ or ‘Young’s
theorem’.
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product of the constant and the original function. In (13) we perform this
exercise for our production function. We are able to extract δ, which proves
that our production function is indeed homogeneous.

But what about our original question? We can answer it, by looking at the
exponent of δ in the last line of (13). It is called the degree of homogeneity.
Sometimes it is also referred to as the λ of a homogeneous function. If λ < 1, the
output contribution of an increase in all inputs declines as we produce more and
more output. This was the case for our old production function Y (K) = K0.5

and it is also the case for our new production function Y (K,L) = K0.5L0.4,
which has a degree of homogeneity of 0.9. If λ > 1 the opposite would be
true: the output contribution of an increase in all inputs would increase as we
produce more. Finally, a function with λ = 1 is called linearly homogeneous
and a proportional increase in inputs always yields an output gain of the same
proportion, independently of how much is already being produced.

As an aside: The degree of homogeneity tells us something important about
the nature of our technology. λ < 1 implies decreasing, λ = 1 constant, and
λ > 1 increasing returns to scale. Non-increasing returns to scale are considered
a precondition for the survival of a competitive market. Increasing returns to
scale lead to one of the traditional forms of market failure: a natural monopoly.
One big company can squeeze all others out of the market, because it can
produce goods more cheaply than any smaller competitor. One solution is for
the government to step in and produce the good on its own. Classic examples
of technologies with increasing returns to scale are railroads and phone lines.

To understand the economic importance of homogeneous production functions,
let’s briefly consider the economic surroundings of our little fresh water factory.
We are using capital and employing labor, but maybe we do not own all of the
capital ourselves and even if we did, why shouldn’t we use it for something else
than fresh water production. We certainly do not own the workers who work
in our factory. Why don’t they go and work somewhere else? The answer is
simple: we earn a return on our capital and we pay the workers, and if we did
not, we would have to close shop.

One of the results that you might remember from a course on microeconomics
is that, under perfect competition, all factors of production are payed according
to their marginal productivity.

The problem is, that non-homogeneous production functions do not easily yield
this fundamental result. The Euler theorem is a mathematical law, that can
help us to understand this problem. It tells us that, as long as the degree of
homogeneity is smaller than or equal to one, we will always produce enough
output to pay our inputs their marginal productivities.

λY (K,L) = YK ·K + YL · L (14)

Equation (14) states the Euler theorem for a production function with two
inputs K and L. The right-hand side sums up the marginal productivities of
all inputs, each multiplied with the employed quantity of the input. This is the
total payment that we will have to make to meet the demand of capital owners
and workers. According to the theorem this payment equals λY (K,L). Since
we produce Y (K,L) and the payment is only the share λ of that, we are fine as
long as λ ≤ 1.

The calculation in (15) demonstrates that the Euler theorem holds for the
production function Y (K,L) = K0.5L0.4 that we have used in the previous
sections.

YK ·K + YL · L =(
0.5 ·K−0.5L0.4

)
·K +

(
0.4 ·K0.5 · L−0.6

)
· L =

0.5 ·K0.5L0.4 + 0.4 ·K0.5L0.4 =

0.9 ·K0.5L0.4 = 0.9 · Y (K,L)

(15)
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Because the Euler theorem gives us this nice result and because it only ap-
plies to homogeneous functions, we will often assume that our functions are
homogeneous.

In fact, we will often assume linearly homogeneous production functions, i.e.
functions with λ = 1. First, because they cause economic profits (i.e. what is
left to us as the owner of the factory after we have payed off our inputs) to be
zero right after profit maximization. If we include price adjustments on the
product market into our model, the same is true for functions that have λ < 1,
but sometimes we do not want to model the product market at all and then it
is convenient to arrive at zero profits right away. Second, linearly homogeneous
functions have a number of other nice mathematical properties that make it
easy to work with them. Chiang (1984, p. 411–414) has many more details on
this topic.

5 Optimization

By now, we have learned quite a bit about derivatives, but we haven’t really
used them for anything. Derivatives are so important to economists, because
they are the basis of optimization calculus.

Optimization uses the most basic interpretation of a derivative: the value of the
derivative is the steepness of the original function.6 Since an optimum is either
a minimum or a maximum of the original function, it is also a place, where the
steepness equals zero. As an analogy, imagine yourself climbing a mountain (the
function): a point from where you can climb up further (first-order derivative
different from zero) cannot be the peak.

YK
!
= 0

YL
!
= 0

(16)

To find the optimum of a function, we simply ask: what is a combination of
inputs, for which all of the function’s first-order derivatives are zero? The
conditions in (16) summarize this question as mathematical expressions for the
case of two inputs K and L.

Unfortunately, this method only gives us candidates for optima. In order
to make sure, that such a candidate is really an optimum and an optimum
of the desired kind (maximum or minimum) we also have to check that the
second-order derivatives conform to the conditions in (17).

YKK > 0 and YLL > 0 (Minimum)
YKK < 0 and YLL < 0 (Maximum)

YKL > 0

(17)

These conditions have intuitive explanations as well.7 However, since we will
rarely use second-order conditions in the course, we will skip them here and
continue with an example instead.

We will now apply optimization to our example of producing sea water from
fresh water. Of course, there is no point in optimizing output, if inputs are
costless. We could simply produce as much as we wanted or needed. There
would not be any limits. To make things more realistic, we will assume that

6Or in the case of more than one input, the steepness ‘when looking into the direction of
that input’.

7Suffice it to say that we have to exclude the possibility of having reached a plateau instead
of the peak of our imaginary mountain. First-order derivatives are short-sighted in the sense
that they will not be able to see that we can climb up further if the function is flat over too
long a distance.
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inputs have to be paid for: each unit of capital costs r (real interest rate8)
and each unit of labor costs w (wage). We will also assume that Y is already
measured in terms of its market value (or, to the same effect, that we can sell
each unit of Y at price 1).

max
K,L

π(K,L) = Y (K,L)− C(K,L) (18)

max
K,L

π(K,L) = Y (K,L)− r ·K − w · L (19)

Expressions (18) and (19) state our optimization problem in a formal way.
maxK,L indicates that we are looking for a maximum and that our choice
variables are K and L. We can adjust only K and L to reach the optimum. All
other variables are called parameters. We want to find the optimal values of
our choice variables given our parameters r and w.

As required by (16), we take derivatives and set them to zero. This yields
equations (20) and (21). We call these equations first-order conditions (FOC).
We will use this term all the time during the course.

∂π

∂K
= YK − r

!
= 0 (20)

∂π

∂L
= YL − w

!
= 0 (21)

Mathematically there can only be an optimum, where all FOCs are fulfilled.
Often, we will combine two or more FOCs to arrive at yet another equation
that will hold in the optimum.

YK
r

=
YL
w

(22)

Since there are only two choice variables in our example, we only get two FOCs.
Combining them is quite straightforward. We get equation (22), which has an
important economic interpretation that you may remember from courses in
microeconomics or economic policy: in the optimum, all factors have the same
marginal productivity per unit of currency.

This gives us a rough guideline for optimizing our production: We ask ourselves
how production would change if we added more capital or labor. If we divide
our estimates of these changes by the respective input prices, we get the terms
on both sides of equation (22). If one of the terms is higher, we will use a
little more of that factor and pay for it with a reduction in the use of the other
factor. We know from the second-order derivatives that such adjustments will
eventually equalize the two terms.9

If this rough guideline isn’t enough for us, we can also calculate the actual optimal
ratio of our inputs. This does, however, require that we agree on a specific
functional form of Y (K,L) and substitute its derivatives into equation (22).
If we stick to the production function Y (K,L) = K0.5L0.4 from the previous
section—the derivatives of which we have already calculated above—we get
equation (23).

0.6K−0.4L0.4

r
=

0.4K0.6L−0.6

w
0.6K−0.4L0.4

0.4K0.6L−0.6
=

r

w
3

2

L

K
=

r

w
L

K
=

2

3

r

w
(23)

8The term ‘real’ bears no specific meaning in this context. In models that include inflation,
economists often differentiate between a real interest rate r and a nominal interest rate i.
Since there is no inflation in our model, we have to pick one of the letters and it is common
practice to use r.

9If you do not understand this last bit, ask yourself what the second-order derivatives tell
us about changes in YK and YL as we adjust inputs.
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Using a specific functional form, the output ratio can be expressed in terms
of the price ratio r

w and the 2
3 which accounts for the fact that the marginal

productivities of the two factors are not the same. If the prices of the two inputs
were the same, we would still use more capital than labor, because it has the
higher marginal productivity in our production function.

Summarizing the results of this section, we have seen that fairly simple op-
timization techniques can be used to determine the input ratio that leads to
maximum output. We have plugged in a specific functional form for our produc-
tion function to illustrate things a bit. But for most of the course, we will stick
to fairly abstract production functions with very few additional assumptions
such as linear homogeneity.

6 The Total Differential and What It Is Used For

In this section, we will look at a very simple example of a mathematical model
that will be used in the course. The model can be analyzed using our final
mathematical technique: the total differential.

We will stick to the example of fresh water production, but we will now take
the perspective of a government that wants to generate tax revenues by levying
a tax on capital. Our goal for this section is to find a rule that tells us, how
firms will change their decision about how much capital and labor to use (the
main result of the previous section) if we introduce a tax (or increase its rate).

First, we have to introduce the capital tax into the maximization calculus (19)
of the firm. That is easily done: taxes represent additional costs. If, for example,
a firm has to pay a return of r = 10% to the owners of the capital it uses and
an additional τ = 2% in taxes, we would simply add up the rate of return r
and the tax rate τ and multiply them with the amount of capital used. Our
new maximization calculus is then given by (24).

max
K,L

π(K,L) = Y (K,L)− (r + τ) ·K − w · L (24)

Repeating the calculation from the previous section we get the first-order
conditions (25) and (26). Combining the two conditions gives us equation (27).

∂π

∂K
= YK − r − τ

!
= 0 (25)

∂π

∂L
= YL − w

!
= 0 (26)

YK
r + τ

=
YL
w

YK
YL

=
r + τ

w
(27)

This result tells us that increasing the tax rate τ will cause firms to use less
capital. How can we see that? An increase in τ will cause the right-hand side of
equation (27) to increase. Firms cannot change anything about the right-hand
side, because it only contains parameters. The left-hand side, however, contains
YK and YL, both of which are derivatives of Y (K,L) and themselves functions
of K (and L). If only we could tell, how K had to change, to increase the term
on the right. Well, we can: Above, we noted that we are willing to assume
YKK < 0 and YKL > 0. We will use these assumptions now. According to the
former an increase in capital will decrease YK and according to the latter it will
increase YL. Since that is the opposite of what we want, we know that firms
will use a decrease in capital to adjust the right-hand side of equation (27) if
the government increases the tax rate τ . Voila.

The total differential is a technique that allows us to translate (the admittedly
fairly exhausting) reasoning above into a very short calculation. It will also tell
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us more precisely how strong the effect of an increase in the tax rate on capital
usage is.

First, some theory: A single equation can have many total differentials; one for
each combination of variables that are allowed to change. Before we calculate a
total differential, we have to choose variables that will be allowed to change.
The total differential will tell us, how changes in the chosen variables fit together
so that the equation does still hold after the changes.

For example, we have seen that if we change τ in equation (27), some other
variable has to be adjusted to compensate for that. We decided to look at how
an adjustment in K would be able to compensate for an adjustment in τ . Our
chosen variables are K and τ .

Calculating a total differential can sometimes be tedious, but the individual
steps are fairly easy. On both sides of the equation, take the derivatives of
each side of the equation, once with respect to each variable that is allowed to
change, add to each derivative an abbreviation for the change in that variable
(e.g. K or τ) and sum up the resulting terms. To make things slightly easier
we will first remove the fractions by rearranging from (27) to (28).

YK · w = YL · (r + τ) (28)

YKK · w dK︸ ︷︷ ︸
∂LHS
∂K

+ 0 dτ︸︷︷︸
∂LHS
∂τ

= YLK · (r + τ) dK︸ ︷︷ ︸
∂RHS
∂K

+YL dτ︸ ︷︷ ︸
∂RHS
∂τ

(29)

(
YKK · w − YLK · (r + τ)

)
dK = YL dτ

dK
dτ =

>0︷︸︸︷
YL

YKK︸ ︷︷ ︸
<0

·w − YLK︸︷︷︸
>0

·(r + τ)
(30)

The total differential is then given by equation (29). Let’s go through it from
left to right: The first term on the left-hand side (LHS) is the derivative of
YK ·w with respect to K. w is a constant, which remains in place, the derivative
of YK is given by YKK . The second term on the LHS is the derivative of YK ·w
with respect to τ . However, neither YK nor w depend on τ .

The first term on the right-hand side (RHS) is the derivative of YL · (r+ τ) with
regard to K. We treat (r+ τ) as a constant and get YLK as the derivative of YL
with regard to K. The second term on the RHS is the derivative of YL · (r + τ)
with regard to τ . We treat YL and r as constants.

The last step contains an important assumption: By treating r as a constant,
we assume that it is not influenced by a change in τ . We will see in one of the
first lectures that this is often called the small-country assumption, because
investors can avoid an impact of the tax on their return by moving capital to
countries which do not raise their taxes.

Finally, we rearrange and arrive at equation (30). The LHS of this equation
tells us that we have found the answer to our question. We are looking at an
expression for the relationship between changes in K and changes in τ . The
term on the RHS is always negative: an increase in τ will lead to a decrease in
K. Additionally, if we were interested in determining the strength of the effect,
we could further analyze the magnitude of the parameters.

Since we are taking the perspective of the government, we can now include this
reaction of firms into our own optimization calculus and ask: Given that firms
will always react as in equation (30), what is our optimal choice for the tax
rate? This, of course, depends on our reasons for levying the tax and it is one
of the questions that we will be asking many times throughout the remainder
of the course.

In this section we have learned to use the total differential. It allows us to treat
an equation as a condition and ask: Given that this condition must hold, how
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will a change in one variable translate into a change in another variable? Or
more generally: How are the changes in different variables related to each other?
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A Rules of differentiation

f f ′

a 0
au au′

u+ v u′ + v′

uv u′v + uv′

u(v) u′(v)v′

u
v

u′v−v′u
v2

Table 2: Rules of differentiation

f f ′

xn nxn−1

ex ex

lnx 1/x
sinx cosx
cosx − sinx

Table 3: Some derivatives

Table 2 lists the most important rules of differentiation; a is a constant, u and
v are functions. Table 3 gives the derivatives of frequently used functions; n is
a constant and x is the input.

When taking the partial derivative of a function with more than one input,
simply treat all terms as constants that do not contain the variable with regard
to which you are differentiating.

B Exercises: Differentiation

1. Calculate all first-order partial derivatives of each function, determine
whether the function is homogeneous and, if so, calculate its degree of
homogeneity.

(a) Y (K,L) = K0.3L0.2

(b) Y (K,L,H) = K0.3L0.7H0.2

(c) Y (K,L) = K0.5 + L0.5

(d) Y (K,L) = K0.3 + L0.7

(e) Y (K,L) = ln(KL)

(f) Y (K,L) =
√
KL

2. Calculate the optimal input ratio for the following combinations of pro-
duction functions and cost functions. (The production function in (d)
has three inputs and, as a consequence, three ratios that characterize the
optimal mix of inputs. Calculate all three.) Use the total derivative to
determine how firms’ usage of capital K will react to an exogenous change
in their usage of labor L.

(a) Y (K,L) and C(K,L) = rK2 + wL2

(b) Y (K,L) = KαLβ and C(K,L) = rK + wL

(c) Y (K,L) = ln(KL) and C(K,L) = rK + wL

(d) Y (K,L,H) = KαLβHγ and C(K,L) = rK + wLL+ wHH
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